Генераторами называют электрические машины, преобразующие механическую энергию в электрическую. Принцип действия электрического генератора основан на использовании явления электромагнитной индукции, которое состоит в следующем. Если в магнитном поле постоянного магнита перемещать проводник так, чтобы он пересекал магнитный поток, то в проводнике возникнет электродвижущая сила (ЭДС), называемая ЭДС индукции (Индукция от латинского слова inductio — наведение, побуждение) , или индуцированной ЭДС. Электродвижущая сила возникает и в том случае, когда проводник остается неподвижным, а перемещается магнит. Явление возникновения индуцированной ЭДС в проводнике - называется электромагнитной индукцией. Если проводник, в котором индуцируется ЭДС, включить в замкнутую электрическую цепь, то под действием ЭДС по цепи потечет ток, называемый индуцированным током.
Опытным путем установлено, что величина индуцированной ЭДС, возникающей в проводнике при его движении в магнитном поле, возрастает с увеличением индукции магнитного поля, длины проводника и скорости его перемещения. Индуцированная ЭДС возникает только тогда, когда проводник пересекает магнитное поле. При движении проводника вдоль магнитных силовых линий ЭДС в нем не индуцируется. Направление индуцированной и тока проще всего определить по правилу правой руки (рис.1): если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, отогнутый большой палец показывал бы направление движения проводника, то остальные вытянутые пальцы укажут направление действия индуцированной ЭДС и направление тока в проводнике. Магнитные силовые линии направлены от северного полюса магнита к южному.
Рис. 1. Определение направления индуцированной ЭДС по правилу правой руки
Имея общее представление об электромагнитной индукции, рассмотрим принцип действия простейшего генератора (рис. 2). Проводник в виде рамки из медной проволоки укреплен на оси и помещен в магнитное поле. Концы рамки присоединены к двум изолированным одна от другой половинам (полукольцам) одного кольца. Контактные пластины (щетки) скользят по этому кольцу. Такое кольцо, состоящее из изолированных полу колец, называют коллектором, а каждое полукольцо — пластиной коллектора. Щетки на коллекторе должны быть расположены таким образом, чтобы они при вращении рамки одновременно переходили с одного полукольца на другое как раз в те моменты, когда ЭДС, индуцируемая в каждой стороне рамки, равна нулю, т. е. когда рамка проходит свое горизонтальное положение.
Рис. 2. Простейший генератор постоянного тока
С помощью коллектора переменная ЭДС, индуцируемая в рамке, выпрямляется, и во внешней цепи создается постоянный по направлению ток.
Присоединив к контактным пластинам внешнюю цепь с электроизмерительным прибором, фиксирующим величину индуцируемого тока, убедимся, что рассмотренное устройство действительно является генератором постоянного тока.
В любой момент времени t ЭДС Е (рис. 3), возникающая в рабочей стороне L рамки, противоположна по направлению ЭДС, возникающей в рабочей стороне Б. Направление ЭДС. в каждой стороне рамки легко определить, воспользовавшись правилом правой руки. ЭДС, индуцируемая всей рамкой, равна сумме ЭДС, возникающих в каждой ее рабочей стороне. Величина ЭДС в рамке непрерывно изменяется. В то время, когда рамка подходит к своему вертикальному положению, количество силовых линий, пересекаемых проводниками в 1 с, будет наибольшим и в рамке индуцируется максимальная ЭДС. Когда рамка проходит горизонтальное положение, ее рабочие стороны скользят вдоль силовых линий, не пересекая их, и ЭДС. не индуцируется. В период движения стороны Б рамки к южному полюсу магнита (рис.3 , а, б) ток в ней направлен на нас. Этот ток проходит через полукольцо, щетку 2, измерительный прибор к щетке /ив сторону А рамки. В этой стороне рамки ток индуцируется в направлении от нас. Своего наибольшего значения ЭДС в рамке достигает тогда, когда стороны ее расположены непосредственно под полюсами (рис.3, б).
Рис. 3. Схема работы генератора постоянного тока
При дальнейшем вращении рамки ЭДС в ней убывает и через четверть оборота становится равной нулю (рис. 3, в). В это время щетки переходят с одного полукольца на другое. Таким образом, за первую половину оборота рамки каждое полукольцо коллектора соприкасалось только с одной щеткой. Ток проходил по внешней цепи в одном направлении от щетки 2 к щетке 1. Будем продолжать вращать рамку. Электродвижущая сила в рамке снова начинает возрастать, так как ее рабочие стороны будут пересекать магнитные силовые линии. Однако направление ЭДС изменяется на противоположное, потому что проводники пересекают магнитный поток в обратном направлении. Ток, индуцируемый в стороне А рамки, направлен теперь на нас. Но ввиду того, что рамка вращается вместе с коллектором, полукольцо, соединенное со стороной А рамки, соприкасается теперь не со щеткой 1, а со щеткой 2 (рис.3, г) и по внешней цепи проходит ток того же направления, как и во время первой половины оборота. Следовательно, коллектор выпрямляет ток, т. е. обеспечивает прохождение индуцируемого тока во внешней цепи в одном направлении. К концу последней четверти оборота (рис.3, д) рамка возвращается в первоначальное положение (см. рис.3, а), после чего весь процесс изменения тока в цепи повторяется.
Таким образом, между щетками 2 и 1 действует постоянная по направлению ЭДС, и ток по внешней цепи всегда проходит в одном направлении — от щетки 2 к щетке 1. Хотя этот ток остается постоянным по направлению, он меняется по величине, т. е. пульсирует. Такой ток практически трудно использовать.
Рассмотрим, как можно получить ток с небольшой пульсацией, т. е. ток, величина которого при работе генератора мало изменяется. Представим себе генератор, состоящий из двух расположенных перпендикулярно один к другому витков (рис.4). Начало и конец каждого витка присоединены к коллектору, состоящему теперь из четырех коллекторных пластин.
Рис.4. Генератор постоянного тока с двумя витками
При вращении этих витков в магнитном поле в них возникает ЭДС. Однако индуцированные в каждом витке ЭДС достигают своих нулевых и максимальных значений не одновременно, а позднее одна другой на время, соответствующее повороту витков на четверть полного оборота, т. е. на 90°. В положении, изображенном на рис.4, в витке 1 возникает максимальная ЭДС, равная Емах. В витке 2 ЭДС не индуцируется, так как его рабочие стороны скользят вдоль магнитных силовых линий, не пересекая их. Величины ЭДС витков показаны на рис.5. По мере поворота витков ЭДС витка 1 убывает. Когда витки повернутся на 1/8 оборота , ЭДС витка 1 станет равной Emin. В этот момент происходит переход щеток на вторую пару коллекторных пластин, соединенных с витком 2. Виток 2 уже повернулся на 1/8 оборота, пересекает магнитные силовые линии и в нем индуцируется ЭДС, равная той же величине Емах. При дальнейшем повороте витков э.д.с. витка 2 возрастает до наибольшей величины Емах. Таким образом, щетки оказываются все время соединенными с витками, в которых индуцируется ЭДС величиной от Emin до Емах.
Рис.5. Кривые пульсации электродвижущей силы двух-виткового генератора
Ток во внешней цепи генератора возникает в результате действия суммарной э.д.с. Поэтому он протекает непрерывно и только в одном направлении. Ток, как и прежде, будет пульсирующим, однако пульсация получается значительно меньше, чем при одном витке, так как э.д.с. генератора не снижается до нуля.
Увеличивая число проводников (витков) генератора и соответственно число коллекторных пластин, можно сделать пульсации тока очень малыми, т. е. ток по величине станет практически постоянным. Например, уже при 20 коллекторных пластинах колебания э.д.с. генератора не превысят 1 % среднего значения. Во внешней цепи получим ток, практически постоянный по величине.
Вместе с тем легко видеть, что генератор, изображенный на рис.4, имеет и очень существенный недостаток. В каждый определенный момент времени внешняя цепь присоединена посредством щеток лишь к одному витку генератора. Второй виток в этот же момент времени совершенно не используется. Электродвижущая сила, индуцируемая в одном витке, весьма мала, а значит и мощность генератора будет небольшой.
Для непрерывного использования всех витков их соединяют между собой последовательно. С этой же целью число коллекторных пластин уменьшают до количества витков обмотки. К каждой коллекторной пластине присоединяют конец одного и начало следующего витка обмотки. Витки в этом случае представляют собой последовательно соединенные источники электрического тока и образуют обмотку якоря генератора. Теперь электродвижущая сила генератора равна сумме э.д.с, индуцируемых в витках, включенных между щетками. Кроме последовательной, существуют и другие схемы соединения витков обмотки. Число витков берется достаточно большим, чтобы получить необходимую величину э.д.с. генератора. Поэтому и коллекторы тепловозных электрических машин получаются с большим количеством пластин.
Таким образом, благодаря большому числу витков обмотки удается не только сгладить пульсации напряжения и тока, но и повысить значение индуцируемой генератором э.д.с.
Выше был рассмотрен электрический генератор, состоящий из постоянных магнитов и одного или нескольких витков, в которых возникает ток. Для практических целей такие генераторы непригодны, так как от них невозможно получить большую мощность. Объясняется это тем, что создаваемый постоянным магнитом магнитный поток очень мал. Кроме того, пространство между полюсами создает для магнитного потока значительное сопротивление. Магнитный поток еще более ослабляется. Поэтому в мощных генераторах, к которым относятся и тепловозные, применяются электромагниты, создающие сильный магнитный поток возбуждения (рис.6). Для уменьшения магнитного сопротивления магнитопровода генератора витки обмотки размещают на стальном цилиндре, который заполняет почти все пространство между полюсами.
Этот цилиндр с помещенной на нем обмоткой и коллектором называется якорем генератора.
Рис. 6. Схема генератора с электромагнитной системой возбуждения и стальным массивным якорем
Обмотка возбуждения генератора расположена на сердечниках главных полюсов. При прохождении по ней тока создается магнитное поле, называемое полем главных полюсов. При разомкнутой внешней цепи генератора магнитные силовые линии располагаются в полюсах и якоре симметрично вертикальной оси (рис.7, а). Для уяснения особенностей работы электрической машины введем понятия о геометрической и физической нейтралях.
Геометрической нейтралью называется линия, проведенная через центр якоря перпендикулярно оси противоположных полюсов (горизонтальная линия 01—01). Физическая нейтраль представляет собой условную линию, которая разделяет зоны влияния северного и южного полюсов на обмотку якоря и проходит перпендикулярно направлению магнитного потока электромашины.
В проводнике обмотки, который при вращении якоря проходит физическую нейтраль, э.д.с. не индуцируется, так как такой проводник скользит вдоль магнитных силовых линий, не пересекая их. В случае отсутствия тока в якоре (см. рис.7, а) физическая нейтраль n—n совпадает с геометрической нейтралью.
Рис.7. Реакция якоря.
а — магнитный поток главных полюсов; б — магнитный поток, создаваемый обмоткой якоря; в — суммарный магнитный поток нагруженного генератора
При замыкании внешней цепи электрической машины ток пойдет и по обмотке якоря. Весь якорь в этом случае будет представлять собой мощный электромагнит, состоящий из стального сердечника и обмотки, по которой проходит ток. Следовательно, кроме потока полюсов, в нагруженном генераторе существует второй магнитный поток, называемый потоком якоря (рис.7, б). Магнитный поток якоря направлен перпендикулярно потоку главных полюсов. Оба магнитных потока накладываются друг на друга и образуют суммарное, или результирующее, поле, показанное на рис.7, в. Направление магнитного поля генератора в результате действия поля якоря смещается в сторону вращения якоря. В ту же сторону смещается и физическая нейтраль, которая занимает в этом случае положение n1-n1.
Влияние магнитного поля якоря на поле полюсов называется реакцией якоря. Реакция якоря отрицательно сказывается на работе генератора. Щетки М—М электрической машины должны быть всегда установлены по направлению физической нейтрали. Поэтому приходится смещать щетки генератора по отношению к геометрической нейтрали на некоторый угол Р (рис.7, в), так как в противном случае между щетками и коллектором возникает сильное искрение. Искрение вызывает подгар поверхности коллектора и щеток и выводит их из строя. Чем больше ток якоря, тем сильнее проявляется реакция якоря, тем на больший угол необходимо сдвигать щетки. При частых изменениях нагрузки тепловозного генератора пришлось бы почти непрерывно менять положение его щеток.
Реакция якоря не только смещает магнитное поле главных полюсов, но и частично ослабляет его, что приводит к уменьшению индуцируемой генератором э. д. с.
Для ослабления реакции якоря в генераторах между основными полюсами устанавливаются добавочные полюсы, а иногда с этой же целью в полюсные наконечники главных полюсов закладывают компенсационную обмотку. Добавочные полюсы создают дополнительное магнитное поле, которое в зонах установки щеток направлено навстречу полю якоря, вследствие чего действие его нейтрализуется (рис.8).
Рис. 8. Схема генератора с добавочными полюсами
Однако этим не ограничивается положительное влияние добавочных полюсов на работу генератора. После прохода через нейтраль генератора направление тока в каждом витке обмотки (см. рис.7) очень быстро изменяется на противоположное. На нейтрали виток оказывается замкнутым накоротко щетками. Такой виток называют коммутирующим (Коммутация от латинского слова commutatio — изменение, перемена). В коммутирующих витках (секциях) обмотки якоря вследствие очень быстрого изменения направления тока возникает довольно большая э.д.с. самоиндукции и взаимоиндукции, которую называют реактивной э.д.с. Эта э.д.с. в коммутирующих секциях усиливается действием магнитного потока якоря, который они пересекают. Действие реактивной э.д.с. приводит к сильному искрению щеток. Добавочные полюсы рассчитывают так, чтобы их магнитный поток был несколько больше магнитного потока якоря. Благодаря этому в коммутирующих секциях индуцируется дополнительная э.д.с. Новая э.д.с. имеет направление, противоположное реактивной э.д.с, и гасит ее, предотвращая интенсивное искрение.
Магнитное поле якоря изменяется с изменением нагрузки (тока) генератора, поэтому для его нейтрализации необходимо изменять и поле компенсационных устройств. Обмотку добавочных полюсов включают последовательно с обмоткой якоря, и по ней проходит весь ток якоря. С увеличением тока генератора возрастает магнитный поток якоря, но вместе с этим возрастает и компенсирующий его магнитный поток добавочных полюсов.
Компенсационная обмотка позволяет дополнительно улучшить распределение магнитного потока в электрической машине. Так, из рис.7 легко видеть, что в результате действия реакции якоря магнитный поток главных полюсов становится неравномерным — с одной стороны полюса он усиливается, а с другой — ослабляется. Это приводит к неравномерной нагрузке якорной обмотки, часть витков окажется перегруженной, ухудшаются условия работы щеток.
С помощью компенсационной обмотки, расположенной на главных полюсах, устраняется искажение магнитного потока непосредственно под главными полюсами. Однако одновременное применение добавочных полюсов и компенсационной обмотки значительно усложняет конструкцию электрических машин. Если удается осуществить удовлетворительную работу электрической машины посредством применения добавочных полюсов, то компенсационную обмотку стараются не применять. Компенсационные обмотки нашли практическое применение лишь в мощных электрических машинах.
***
Источник: http://www.radioingener.ru/category/generator-postoyannogo-toka/ |